skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jie, Jian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One-dimensional artificial pinning centers (1D-APCs) in YBa2Cu3O7-x nanocomposite films provide strong collective pinning at magnetic field B//c-axis. In this work, we reveal a 1D-APC/YBa2Cu3O7-x interface is preferred for high pinning efficiency of individual 1D-APCs including BaHfO3 and BaZrO3. The coherent 1D-APC/YBa2Cu3O7-x interface may be obtained via either growth of the nanocomposite films at optimal condition or Ca-diffusion to dynamically reduce the interface strain during the nanocomposite film growth. Interestingly, the high pinning efficiency of the 1D-APCs with coherent interfaces with YBCO not only lead to a high critical current density (Jc) in magnetic fields up to 9.0 T at H//c-axis but also enhanced Jc over a larger angular range when H is away from H//c-axis up to θ=60-80 degree than that in the case the interface is defective. This result suggests the importance of understanding and engineering the APC/YBCO interface for optimal pinning in nanocomposite films. 
    more » « less